On the sums $\sum \sp{n}\sb{k=0}\,k\sp{p}$ and $\sum \sp{n}\sb{k=0}\,(-1)\sp{k}k\sp{p}$

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs

‎For a coloring $c$ of a graph $G$‎, ‎the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively‎ ‎$sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$‎, ‎where the summations are taken over all edges $abin E(G)$‎. ‎The edge-difference chromatic sum‎, ‎denoted by $sum D(G)$‎, ‎and the edge-sum chromatic sum‎, ‎denoted by $sum S(G)$‎, ‎a...

متن کامل

Bilinear Exponential Sums and Sum-Product Problems on Elliptic Curves

Let E be an ordinary elliptic curve over a finite field IFq of q elements. We improve a bound on bilinear additive character sums over points on E, and obtain its analogue for bilinear multiplicative character sums. We apply these bounds to some variants of the sum-product problem on E. 2000 Mathematics Subject Classification: Primary 11G05, 11L07, 11T23

متن کامل

Bilinear Character Sums and Sum–product Problems on Elliptic Curves

Let E be an ordinary elliptic curve over a finite field Fq of q elements. We improve a bound on bilinear additive character sums over points on E, and obtain its analogue for bilinear multiplicative character sums. We apply these bounds to some variants of the sum–product problem on E.

متن کامل

On trees and the multiplicative sum Zagreb index

For a graph $G$ with edge set $E(G)$, the multiplicative sum Zagreb index of $G$ is defined as$Pi^*(G)=Pi_{uvin E(G)}[d_G(u)+d_G(v)]$, where $d_G(v)$ is the degree of vertex $v$ in $G$.In this paper, we first introduce some graph transformations that decreasethis index. In application, we identify the fourteen class of trees, with the first through fourteenth smallest multiplicative sum Zagreb ...

متن کامل

Subsequence Sums of Zero-sum-free Sequences

Let G be a finite abelian group, and let S be a sequence of elements in G. Let f(S) denote the number of elements in G which can be expressed as the sum over a nonempty subsequence of S. In this paper, we slightly improve some results of [10] on f(S) and we show that for every zero-sum-free sequences S over G of length |S| = exp(G) + 2 satisfying f(S) > 4 exp(G) − 1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1964

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1964-0167738-3